None but	Only fuzzy	It is not true
mean animals	animals	that some bears
are bears.	are bears.	are mean.
Only rich	Whoever	One or more
people	is logical	wolverines
are happy.	is clever.	are mean.
Not all	One or more	Only bears
people are	bears are	are fuzzy
happy.	not mean.	animals.
It is not true	Wolverines	Not all
that all bears	are	steaks are
are mean.	ferocious.	well done.
An animal is not	Wolverines	There is at
a bear unless	are not	least one bear
it is furry.	vegetarians.	that is mean.
It is false that	Bears	Every bear
some bears are	are	likes to
not dangerous.	fuzzy.	eat fish.
Not every	Whoever	It is false that
bear is	is thin is	some logicians
furry.	not jolly.	are not intelligent.
Any bear	Nothing is a bear	Only bears
likes to eat	unless it likes	like to eat
raspberries.	to eat raspberries.	raspberries.

no B is M	all B is F	all B is M
some W is M	all L is C	all H is R
all F is B	some B is not M	some P is not H
some S is not W	all W is F	some B is not M
some B is M	no W is V	all B is F
all B is L	all B is F	all B is D
all L is I	no T is J	some B is not F
all L is B	all B is L	all B is L

Not either A or B.	Not both A and B.	Not if A then B.
Either not A or B.	Both not A and B.	If not A then B.
If A, then B and C.	If A then B, and C.	Either A, or B and C.

A but B.	A just if B.	A only if B.
Only if A, B.	A unless B.	Unless A, B.
A if B.	Provided that A, B.	A, provided that B.
A is sufficient for B.	A is necessary for B.	A is necessary and sufficient for B.

$$\sim (A \supset B) \qquad \sim (A \cdot B) \qquad \sim (A \vee B)$$

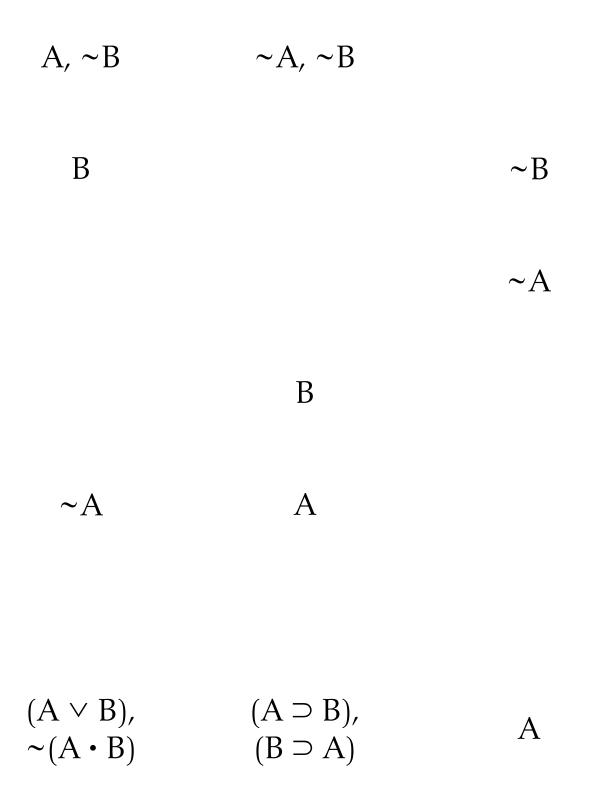
$$(\sim A \supset B)$$
 $(\sim A \cdot B)$ $(\sim A \vee B)$

$$(A \lor (B \cdot C)) \qquad ((A \supseteq B) \cdot C) \qquad (A \supseteq (B \cdot C))$$

$$(A \supset B) \qquad (A \equiv B) \qquad (A \cdot B)$$

$$(A \lor B) \qquad (A \lor B) \qquad (B \supset A)$$

$$(B \supset A) \qquad (A \supset B) \qquad (B \supset A)$$


 $(A \equiv B) \qquad (\sim A \supset \sim B) \qquad (A \supset B)$

(A • B)	$(A \lor B)$	$(A \supset B)$
\sim (A • B)	\sim (A \vee B)	\sim (A \supset B)
$ \begin{array}{c} \sim (\mathbf{A} \boldsymbol{\cdot} \mathbf{B}) \\ \mathbf{A} \end{array} $	$(A \lor B) \\ A$	$(A \supset B)$ A
$ \overset{\sim}{} (\mathbf{A} \cdot \mathbf{B}) \\ \mathbf{B} $	$(A \lor B) \\ B$	$(A \supset B)$ B
$\sim (\mathbf{A} \cdot \mathbf{B}) \\ \sim \mathbf{A}$	$(A \lor B) \\ \sim A$	$(A \supset B) \\ \sim A$
$\sim (\mathbf{A} \cdot \mathbf{B}) \\ \sim \mathbf{B}$	$(A \lor B) \\ \sim B$	$(A \supset B) \\ \sim B$

~~A	$(A \equiv B)$	\sim (A \equiv B)
-----	----------------	-----------------------

S- and I-rules (Sections 6.10, 6.11, & 7.1) – back of flash card

А, В

All bears are furry.	Nothing is a mean bear.	No old bear is mean.
Some bears are mean.	Not every furry bear is mean.	Every bear who is old is mean.
No bears are mean.	Some old bears are mean.	No old bears are mean.
Some bears are not mean.	All old bears are furry.	Some animals are not old bears.
Some bears who aren't old are mean.	All bears who aren't old are mean.	Not all bears are mean.
Not anyone is rich.	Not everyone is rich.	If everyone is inside, then no one is outside.
If anyone is good, it will snow.	If someone is good, it will snow.	If everyone is good, it will snow.
Fido is a dog.	If everything is a dog, then everything barks.	If all dogs bark, then Fido barks.

Quantificational logic (Sections 8.1 & 8.4) – back of flash card

$$\sim (\exists x)((Ox \cdot Bx) \cdot Mx) \sim (\exists x)(Mx \cdot Bx)$$
 (x)(Bx \supset Fx)

$$(\mathbf{x})((\mathbf{B}\mathbf{x}\boldsymbol{\cdot}\mathbf{O}\mathbf{x})\supset\mathbf{M}\mathbf{x}) \qquad \sim (\mathbf{x})((\mathbf{F}\mathbf{x}\boldsymbol{\cdot}\mathbf{B}\mathbf{x})\supset\mathbf{M}\mathbf{x}) \qquad (\exists \mathbf{x})(\mathbf{B}\mathbf{x}\boldsymbol{\cdot}\mathbf{M}\mathbf{x})$$

$$\sim (\exists x)((Ox \cdot Bx) \cdot Mx)$$
 $(\exists x)((Ox \cdot Bx) \cdot Mx)$ $\sim (\exists x)(Bx \cdot Mx)$

$$(\exists \mathbf{x})(\mathbf{A}\mathbf{x} \cdot \mathbf{\sim}(\mathbf{O}\mathbf{x} \cdot \mathbf{B}\mathbf{x})) \qquad (\mathbf{x})((\mathbf{O}\mathbf{x} \cdot \mathbf{B}\mathbf{x}) \supset \mathbf{F}\mathbf{x}) \qquad (\exists \mathbf{x})(\mathbf{B}\mathbf{x} \cdot \mathbf{\sim}\mathbf{M}\mathbf{x})$$

$$\sim (x)(Bx \supset Mx) \qquad (x)((Bx \cdot \sim Ox) \supset Mx) \qquad (\exists x)((Bx \cdot \sim Ox) \cdot Mx)$$

$$((x)Ix \supset \sim(\exists x)Ox) \qquad \sim(x)Rx \qquad (x)\sim Rx$$

$$((x)Gx \supset S) \qquad ((\exists x)Gx \supset S) \qquad (x)(Gx \supset S)$$

$$((x)(Dx \supset Bx) \supset Bf) \qquad ((x)Dx \supset (x)Bx) \qquad Df$$

There are	Aristotle	There is
at least two	is the first	exactly one
philosophers.	logician.	philosopher.
Someone besides	Everyone except	Aristotle
Aristotle is	Aristotle is	alone is a
a philosopher.	illogical.	philosopher.
Aristotle	Aristotle	Socrates
knows	knows	knows
Socrates.	someone.	himself.
Someone	Aristotle	Everyone
knows	knows	knows
Aristotle.	everyone.	Aristotle.
Someone	Everyone	Everyone knows
knows	knows	himself or
someone.	everyone.	herself.
There is	Everyone knows	Everyone knows
someone that	someone	someone besides
everyone knows.	or other.	himself or herself.
There is some	Everyone knows	There is some
philosopher that	some philosopher	philosopher that
everyone knows.	or other.	no one knows.
Everyone who	Everyone who	Every philosopher
knows Aristotle	knows everyone	besides Aristotle
knows someone.	knows Aristotle.	knows Aristotle.

Identity and relations (Sections 9.1, 9.3, & 9.4) – back of flash card

$$\begin{array}{ccc} (\exists x)(Px \cdot & & \\ \sim(\exists y)(\sim y = x \cdot Py)) \end{array} & a = f & (\exists x)(\exists y)(\sim x = y \cdot & \\ (Px \cdot Py)) \end{array}$$

$$(Pa \cdot (\exists x)(\neg x=a \cdot Px)) \qquad (x)(\neg x=a \supset Ix) \qquad (\exists x)(\neg x=a \cdot Px)$$

Kss
$$(\exists x)$$
Kax Kas

(x)Kxa (x)Kax
$$(\exists x)Kxa$$

(x)Kxx
$$(x)(y)Kxy \quad (\exists x)(\exists y)Kxy$$

$$(x)(\exists y)(\sim y = x \cdot Kxy) \qquad (x)(\exists y)Kxy \qquad (\exists y)(x)Kxy$$

$$(\exists x)(Px \cdot (\exists y)Kyx) \qquad (x)(\exists y)(Py \cdot Kxy) \qquad (\exists y)(Py \cdot (x)Kxy)$$

$$\begin{array}{ll} (x)((Px \cdot \sim x=a) \\ \supset Kxa) \end{array} (x)((y)Kxy \supset Kxa) \qquad (x)(Kxa \supset (\exists y)Kxy) \end{array}$$

Would logie (beetion 10.1) - front of hubit eard		
A entails B.	If A, then it can't be that B.	Not-A is logically possible.
A does not entail B.	If A, then it is impossible that B.	If A, then B (taken by itself) is necessary.
A entails not-B.	A is consistent with B.	If A, then B (taken by itself) is impossible.
A is a	A is inconsistent	"A and B" entails

A does not	is impossible	(taken by itself)
entail B.	that B.	is necessary.
A entails not-B.	A is consistent with B.	If A, then B (taken by itself) is impossible.
A is a	A is	"A and B"
contingent	inconsistent	entails
statement.	with B.	"C."
A is a contingent truth.	A is not logically necessary.	A is true.
If A, then it is necessary that B.	Not-A is logically necessary.	If A then B.
If A, then	A is not	A is
it must be	logically	incompatible
that B.	possible.	with not-B.
A is true	A is true	A is true
in all	in some	in the
possible worlds.	possible worlds.	actual world.

You do A.	Do A.	If you do A, then do B.
Don't combine doing A with not doing B.	Let everyone who is A do B.	If X hits you, then hit X.
You ought to do A.	You ought not to combine doing A with doing B.	There is someone who has a duty to do A.
A is permissible.	You ought to do A or B.	It is obligatory that someone do A.
A is obligatory.	A is wrong.	X ought to hit Y.
It is obligatory that someone do both A and B.	It is obligatory that someone who does A do B.	If you do A, then you ought to do B.
It is not obligatory that everyone do A.	It is not possible that everyone do A.	If you ought to do A, then do A.

$(Au \supset B\underline{u})$	A <u>u</u>	Au
(Hxu⊃H <u>u</u> x)	$(\mathbf{x})(\mathbf{A}\mathbf{x} \supset \mathbf{B}\underline{\mathbf{x}})$	$\sim (\underline{A} \cdot \sim \underline{B})$
(∃x)OA <u>x</u>	O~(A <u>u</u> ∙ B <u>u</u>)	OA <u>u</u>
O(∃x)A <u>x</u>	$O(A\underline{u} \lor B\underline{u})$	R <u>A</u>
ОН <u>х</u> у	O~ <u>A</u>	0 <u>A</u>
(Au⊃OB <u>u</u>)	$O(\exists x)(Ax \cdot B\underline{x})$	$O(\exists x)(A\underline{x} \cdot B\underline{x})$
$(OA\underline{u} \supset A\underline{u})$	$\sim \Diamond(\mathbf{x}) \mathbf{A} \mathbf{x}$	$\sim O(x)A\underline{x}$

You believe that A.	You do A.	You ought to want A to be done.
Believe that A.	Do A.	You believe that A ought to be done.
You ought to believe that A.	You act to do A.	You believe that A is evident to you.
It would be reasonable for you to believe that A.	Act to do A.	You want X to do A to you.
A is evident to you.	You want A to be done.	You believe that everyone ought to do A.
A would be unreasonable for you to believe.	Want A to be done.	Everyone believes that you ought to do A.
You do not believe that A.	You know that A. (???)	It is evident to you that if A then B.

O <u>u:A</u>	Au	u:A
u:O <u>A</u>	A <u>u</u>	<u>u</u> :A
u:O <u>u</u> :A	u:A <u>u</u>	O <u>u</u> :A
u:A <u>x</u> u	<u>u</u> :A <u>u</u>	R <u>u</u> :A
u:(x)OA <u>x</u>	u: <u>A</u>	O <u>u</u> :A
(x)x:OA <u>u</u>	<u>u:A</u>	~R <u>u</u> :A
$O\underline{u}:(A \supset B)$	$(O\underline{u}:A \cdot (A \cdot u:A))$	~u:A

appeal to authority	ambiguity	false stereotype
appeal to the crowd	beside the point	genetic fallacy
appeal to emotion	black and white	opposition
appeal to force	circularity	pro-con
ad hominem	complex question	post hoc
appeal to ignorance	part-whole	straw man

Informal Fallacies (Sections 4.1 & 4.2) – back of flash card

Assuming that the members of a certain group are more alike than they are.

Arguing that your view must be false because we can explain why you hold it.

Arguing that a view must be false because our opponents believe it.

A one-sided appeal to advantages and disadvantages.

Arguing that, since A happened after B, thus A was caused by B.

Misrepresenting an opponent's views.

Changing the meaning of a term or phrase within the argument.

Arguing for a conclusion irrelevant to the issue at hand.

Oversimplifying by assuming that one of two extremes views must be true.

Assuming the truth of what has to be proved – or using A to prove B and then B to prove A.

Asking a question that assumes the truth of something false or doubtful.

Arguing that what applies to the parts must apply to the whole – or vice versa. Appealing in an improper way to expert opinion.

Arguing that a view must be true because most people believe it.

Stirring up emotions instead of arguing in a logical manner.

Using threats or intimidation to get a conclusion accepted.

Improperly attacking the person instead of the view.

Arguing that a view must be false because no one has proved it.

appeal to authority	ambiguity	false stereotype
appeal to	beside	genetic
the crowd	the point	fallacy
appeal to emotion	black and white	opposition
appeal to force	circularity	pro-con
ad	complex	post
hominem	question	hoc
appeal to	part-	straw
ignorance	whole	man

Informal Fallacies big (Sections 4.1 & 4.2) – back of flash card

Assuming that the members of a certain group are more alike than they are.

Arguing that your view must be false because we can explain why you hold it.

Arguing that a view must be false because our opponents believe it.

A one-sided appeal to advantages and disadvantages.

Arguing that, since A happened after B, thus A was caused by B.

Misrepresenting an opponent's views.

Changing the meaning of a term or phrase within the argument.

Arguing for a conclusion irrelevant to the issue at hand.

Oversimplifying by assuming that one of two extremes views must be true.

Assuming the truth of what has to be proved – or using A to prove B and then B to prove A.

Asking a question that assumes the truth of something false or doubtful.

Arguing that what applies to the parts must apply to the whole – or vice versa. Appealing in an improper way to expert opinion.

Arguing that a view must be true because most people believe it.

Stirring up emotions instead of arguing in a logical manner.

Using threats or intimidation to get a conclusion accepted.

Improperly attacking the person instead of the view.

Arguing that a view must be false because no one has proved it.